
Synchronization in Random Graphs PISA 2026
Problems

This is a preliminary list of problems for the mini-course Synchronization in Random Graphs,
taught at PISA 2026 in Santiago de Chile. It is likely to be plenty of errors, typos, etc. Please do
not hesitate to contact me at pgroisma@dm.uba.ar if you find any of them. ´

1. Phase cohesiveness and arc length. Pick γ < 2π/3 and n ≥ 3. Show the following
statement: if θ ∈ Tn satisfies ∣θi − θj ∣ ≤ γ for all i, j ∈ {1, . . . , n}, then there exists an arc of
length γ containing all angles, that is, θ ∈ Γarc(γ). Show that the statement is false if γ ≥ 2π/3.

2. Order parameter and arc length. Given n ≥ 2 and θ ∈ Tn, the shortest arc length
γ(θ) is the length of the shortest arc containing all angles, i.e., the smallest γ(θ) such that
θ ∈ Γarc(γ(θ)). Given θ ∈ Tn, the order parameter is the centroid of (θ1, . . . , θn) understood
as points on the unit circle in the complex plane C:

r(θ)eψ(θ) ∶= 1

n

n

∑
j=1

eiθj

where recall i =
√
−1. The order parameter magnitude r is known to measure synchronization.

Show the following statements: Show that

(i) if γ(θ) ∈ [0, π], then r(θ) ∈ [cos(γ(θ)/2),1].

(iii) all oscillators are phase-synchronized if and only if r = 1, and
(iv) if all oscillators are spaced equally on the unit circle, then r = 0.

3. The Cycle Cn. Consider a Kuramoto oscillator network defined over a symmetric cycle graph
with identical unit weights and zero natural frequencies. The equilibria are determined by

0 = sin(θi − θi−1) + sin(θi − θi+1),

where i ∈ {1, . . . , n} and all indices are evaluated modulo n.

(a) Show that for n > 4 and −n2 < q <
n
2 , θq = (0, 2qπn , 4qπn , . . . ,

(n−1)2qπ
n ) is an equilibrium.

(b) Show that if −n4 < q <
n
4 , then θq is a local minimum of the energy.

4. Potential and order parameter. Recall U(θ) = ∑{i,j}∈E aij(1− cos(θi−θj)). Prove U(θ) =
Kn
2 (1 − r

2) for a complete homogeneous graph with coupling strength aij =K/n.

Note: Recall the Courant-Fisher minimax characterization of the eigenvalues of a symmetric
matrix P = P T ∈ Rn×n:

λk = min
S∈Sk

max
u∈S
∥u∥2=1

⟨Pu,u⟩,

where Sk is the set of k-dimensional vector subspaces of Rn.
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5. Let L be the Laplacian matrix of the graph G = (V,E) with (symmetric) adjacency matrix A
and real eigenvalues λ1 ≤ λ2 ≤ ⋯ ≤ λn. Prove

(a) For all u ∈ Rn,
⟨Lu,u⟩ = ∑

{i,j}∈E

aij(uj − ui)2.

(b) L1n = 0.
(c)

λ2 = min
∣u∣2=1,u⊥1n

⟨Lu,u⟩

(d) λ1 = 0 and (λ2 > 0 if and only if G is connected).

(e) L is positive semidefinite. If G is connected, L ∣⟨1n⟩⊥ is positive definite. That is ⟨Lu,u⟩ >
0 for every nonzero u ∈ ⟨1n⟩⊥

(f) If A′ ≥ A component wise, then λk(A′) ≥ λk(A).

6. Prove that the algebraic connectivity of the given graphs is the given one.

Graph Algebraic connectivity

path graph Pn 2(1 − cos(π/n)) ∼ π2/n2

cycle graph Cn 2(1 − cos(2π/n)) ∼ 4π2/n2

star graph Sn 1
complete graph Kn n

7. Upper and lower bound on largest Laplacian eigenvalue. Let G be an undirected graph
with symmetric Laplacian matrix L = LT ∈ Rn×n, Laplacian eigenvalues 0 = λ1 ≤ λ2 ≤ ⋯ ≤ λn,
and maximum degree dmax =maxi∈{1,...,n} di. Show that the maximum eigenvalue λn satisfies:

dmax ≤ λn ≤ 2dmax.

Hint: For the upper bound you may want to use Gershgorin Disks Theorem, or write L =
2D − (D +A).

8. Let y(t) be a smooth function that verifies for 0 ≤ t ≤ T ,

ẏ(t) ≤ −cy(t),

for some c > 0. Then y(t) ≤ y(0)e−ct for all 0 ≤ t ≤ T .

9. Prove that for smooth u,

lim
ϵ→0

1

ϵd
∫
Td
∫
Td
(1 − cos(u(y) − u(x))

ϵ2
)1{∣y − x∣ < ϵ}dy dx = κd∫

Td
∣∇u(x)∣2 dx.

10. Let N ∼ Bi(n, p). Assume p→ 0 as n→∞.

(a) Prove that
E(e−tN) ≤ e−tnp, for n large enough.
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(b) Prove that

P(∣N − np∣ > t) ≤ 2exp{− t2

2np + 2
3 t
}

Hint.: Use Bernstein inequality.
(c) Take t = δnp in the above inequality.

11. Poissonization. Let x0, x1, . . . be i.i.d. uniform random variables on the torus Td. Let Gn

by a RGG with parameter ϵn constructed with x0, . . . , xn and Un the Kuramoto energy of Gn.

Un(u) = Un(u0, . . . , un−1) =
1

2

n

∑
i=1
∑
j∼i
xj∈Vn

(1 − cos(uj − ui)).

Here σd is the volume of the d−dimensional unit ball. Finally let N be a Poisson random
variable of parameter n.

(a) Prove that for every δ > 0
P(∣N − n

n
∣ > δ) ≤ e−cn,

for some constant c > 0.
(b) Prove that for every p ≥ 1

lim
n→∞

E(∣N − n∣
n
)
p

= 0.

(c) Prove that if u ∈ C1(Td)

lim
n→∞

n−2ϵ−(d+2)n E∣UN(u) −Un(u)∣ = 0.

12. Let Ni be the degree of node i in a RGG on the d−dimensional torus Td with parameter ϵn.
Prove that

P( n
sup
i=1

Ni ≥
2σdnϵ

d
n

(2π)d
) ≤ 2ne−cϵ

d
nn.

13. Call Nij = ∣{k∶ ∣xi − xk∣ < ϵn, ∣xj − xk∣ < ϵn}∣ the number of common neighbors of i and j,

(a) Prove that E(Nij ∣i ∼ j) ≥ cdnϵdn.
(b) Prove that

P(Nij ≤
cdnϵ

d
n

2
∣i ∼ j) ≤ e−cnϵ

d
n .

(c) Prove that

P(inf
i∼j

Nij <
cdnϵ

d
n

2
) ≤ n2e−cϵ

d
nn

ϵdnσd
(2π)d

.

14. For a RGG with parameter ϵn, prove that if nϵdn
logn →∞ and ϵn → 0, then

lim
n→∞

λn(L)
λ2(L)

= lim
n→∞

λn(L)
λ2(L)

= ∞.
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