

Synchronization in Random Graphs PISA 2026

Problems

This is a preliminary list of problems for the mini-course *Synchronization in Random Graphs*, taught at PISA 2026 in Santiago de Chile. It is likely to be plenty of errors, typos, etc. Please do not hesitate to contact me at pgroisma@dm.uba.ar if you find any of them.

1. **Phase cohesiveness and arc length.** Pick $\gamma < 2\pi/3$ and $n \geq 3$. Show the following statement: if $\theta \in \mathbb{T}^n$ satisfies $|\theta_i - \theta_j| \leq \gamma$ for all $i, j \in \{1, \dots, n\}$, then there exists an arc of length γ containing all angles, that is, $\theta \in \Gamma_{\text{arc}}(\gamma)$. Show that the statement is false if $\gamma \geq 2\pi/3$.
2. **Order parameter and arc length.** Given $n \geq 2$ and $\theta \in \mathbb{T}^n$, the shortest arc length $\gamma(\theta)$ is the length of the shortest arc containing all angles, i.e., the smallest $\gamma(\theta)$ such that $\theta \in \Gamma_{\text{arc}}(\gamma(\theta))$. Given $\theta \in \mathbb{T}^n$, the order parameter is the centroid of $(\theta_1, \dots, \theta_n)$ understood as points on the unit circle in the complex plane \mathbb{C} :

$$r(\theta) e^{\psi(\theta)} := \frac{1}{n} \sum_{j=1}^n e^{i\theta_j}$$

where recall $i = \sqrt{-1}$. The order parameter magnitude r is known to measure synchronization. Show the following statements: Show that

- (i) if $\gamma(\theta) \in [0, \pi]$, then $r(\theta) \in [\cos(\gamma(\theta)/2), 1]$.
- (iii) all oscillators are phase-synchronized if and only if $r = 1$, and
- (iv) if all oscillators are spaced equally on the unit circle, then $r = 0$.

3. **The Cycle C_n .** Consider a Kuramoto oscillator network defined over a symmetric cycle graph with identical unit weights and zero natural frequencies. The equilibria are determined by

$$0 = \sin(\theta_i - \theta_{i-1}) + \sin(\theta_i - \theta_{i+1}),$$

where $i \in \{1, \dots, n\}$ and all indices are evaluated modulo n .

- (a) Show that for $n > 4$ and $-\frac{n}{2} < q < \frac{n}{2}$, $\theta^q = (0, \frac{2q\pi}{n}, \frac{4q\pi}{n}, \dots, \frac{(n-1)2q\pi}{n})$ is an equilibrium.
- (b) Show that if $-\frac{n}{4} < q < \frac{n}{4}$, then θ^q is a local minimum of the energy.

4. **Potential and order parameter.** Recall $U(\theta) = \sum_{\{i,j\} \in E} a_{ij}(1 - \cos(\theta_i - \theta_j))$. Prove $U(\theta) = \frac{Kn}{2}(1 - r^2)$ for a complete homogeneous graph with coupling strength $a_{ij} = K/n$.

Note: Recall the Courant-Fisher minimax characterization of the eigenvalues of a symmetric matrix $P = P^T \in \mathbb{R}^{n \times n}$:

$$\lambda_k = \min_{S \in S_k} \max_{\substack{u \in S \\ \|u\|_2=1}} \langle Pu, u \rangle,$$

where S_k is the set of k -dimensional vector subspaces of \mathbb{R}^n .

5. Let L be the Laplacian matrix of the graph $G = (V, E)$ with (symmetric) adjacency matrix A and real eigenvalues $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$. Prove

(a) For all $u \in \mathbb{R}^n$,

$$\langle Lu, u \rangle = \sum_{\{i,j\} \in E} a_{ij}(u_j - u_i)^2.$$

(b) $L\mathbf{1}_n = 0$.

(c)

$$\lambda_2 = \min_{\|u\|_2=1, u \perp \mathbf{1}_n} \langle Lu, u \rangle$$

(d) $\lambda_1 = 0$ and $(\lambda_2 > 0$ if and only if G is connected).

(e) L is positive semidefinite. If G is connected, $L|_{\langle \mathbf{1}_n \rangle^\perp}$ is positive definite. That is $\langle Lu, u \rangle > 0$ for every nonzero $u \in \langle \mathbf{1}_n \rangle^\perp$

(f) If $A' \geq A$ component wise, then $\lambda_k(A') \geq \lambda_k(A)$.

6. Prove that the algebraic connectivity of the given graphs is the given one.

Graph	Algebraic connectivity
path graph P_n	$2(1 - \cos(\pi/n)) \sim \pi^2/n^2$
cycle graph C_n	$2(1 - \cos(2\pi/n)) \sim 4\pi^2/n^2$
star graph S_n	1
complete graph K_n	n

7. **Upper and lower bound on largest Laplacian eigenvalue.** Let G be an undirected graph with symmetric Laplacian matrix $L = L^T \in \mathbb{R}^{n \times n}$, Laplacian eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$, and maximum degree $d_{\max} = \max_{i \in \{1, \dots, n\}} d_i$. Show that the maximum eigenvalue λ_n satisfies:

$$d_{\max} \leq \lambda_n \leq 2d_{\max}.$$

Hint: For the upper bound you may want to use Gershgorin Disks Theorem, or write $L = 2D - (D + A)$.

8. Let $y(t)$ be a smooth function that verifies for $0 \leq t \leq T$,

$$\dot{y}(t) \leq -cy(t),$$

for some $c > 0$. Then $y(t) \leq y(0)e^{-ct}$ for all $0 \leq t \leq T$.

9. Prove that for smooth u ,

$$\lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon^d} \int_{\mathbb{T}^d} \int_{\mathbb{T}^d} \left(\frac{1 - \cos(u(y) - u(x))}{\epsilon^2} \right) \mathbf{1}\{|y - x| < \epsilon\} dy dx = \kappa_d \int_{\mathbb{T}^d} |\nabla u(x)|^2 dx.$$

10. Let $N \sim \text{Bi}(n, p)$. Assume $p \rightarrow 0$ as $n \rightarrow \infty$.

(a) Prove that

$$\mathbb{E}(e^{-tN}) \leq e^{-tnp}, \quad \text{for } n \text{ large enough.}$$

(b) Prove that

$$\mathbb{P}(|N - np| > t) \leq 2\exp\left\{-\frac{t^2}{2np + \frac{2}{3}t}\right\}$$

Hint.: Use Bernstein inequality.

(c) Take $t = \delta np$ in the above inequality.

11. **Poissonization.** Let x_0, x_1, \dots be i.i.d. uniform random variables on the torus \mathbb{T}^d . Let G_n by a RGG with parameter ϵ_n constructed with x_0, \dots, x_n and U_n the Kuramoto energy of G_n .

$$U_n(\mathbf{u}) = U_n(u_0, \dots, u_{n-1}) = \frac{1}{2} \sum_{i=1}^n \sum_{\substack{j \sim i \\ x_j \in V_n}} (1 - \cos(u_j - u_i)).$$

Here σ_d is the volume of the d -dimensional unit ball. Finally let N be a Poisson random variable of parameter n .

(a) Prove that for every $\delta > 0$

$$\mathbb{P}\left(\left|\frac{\mathsf{N} - n}{n}\right| > \delta\right) \leq e^{-cn},$$

for some constant $c > 0$.

(b) Prove that for every $p \geq 1$

$$\lim_{n \rightarrow \infty} \mathbb{E}\left(\frac{|\mathsf{N} - n|}{n}\right)^p = 0.$$

(c) Prove that if $u \in C^1(\mathbb{T}^d)$

$$\lim_{n \rightarrow \infty} n^{-2} \epsilon_n^{-(d+2)} \mathbb{E}|U_{\mathsf{N}}(u) - U_n(u)| = 0.$$

12. Let N_i be the degree of node i in a RGG on the d -dimensional torus \mathbb{T}^d with parameter ϵ_n . Prove that

$$\mathbb{P}\left(\sup_{i=1}^n N_i \geq \frac{2\sigma_d n \epsilon_n^d}{(2\pi)^d}\right) \leq 2n e^{-c\epsilon_n^d n}.$$

13. Call $N_{ij} = |\{k: |x_i - x_k| < \epsilon_n, |x_j - x_k| < \epsilon_n\}|$ the number of common neighbors of i and j ,

(a) Prove that $\mathbb{E}(N_{ij}|i \sim j) \geq c_d n \epsilon_n^d$.

(b) Prove that

$$\mathbb{P}\left(N_{ij} \leq \frac{c_d n \epsilon_n^d}{2} \mid i \sim j\right) \leq e^{-c n \epsilon_n^d}.$$

(c) Prove that

$$\mathbb{P}\left(\inf_{i \sim j} N_{ij} < \frac{c_d n \epsilon_n^d}{2}\right) \leq n^2 e^{-c \epsilon_n^d n} \frac{\epsilon_n^d \sigma_d}{(2\pi)^d}.$$

14. For a RGG with parameter ϵ_n , prove that if $\frac{n \epsilon_n^d}{\log n} \rightarrow \infty$ and $\epsilon_n \rightarrow 0$, then

$$\lim_{n \rightarrow \infty} \frac{\lambda_n(L)}{\lambda_2(L)} = \lim_{n \rightarrow \infty} \frac{\lambda_n(\mathcal{L})}{\lambda_2(\mathcal{L})} = \infty.$$