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The intent of this mini-course is to introduce the phenomenon of a phase tran-
sition in mathematical models as well as a handful of pivotal tools alongside
standard models they can be applied to. For further results and detailed
proofs of central results mentioned (but not proved) here, references will be
given in the corresponding sections.

1 Percolation

1.1 Introduction

Percolation is one of the simplest models in probability theory which exhibits
what is known as critical phenomena or phase transition. This usually means
that there is a natural parameter in the model at which the global behavior
of the system drastically changes. Percolation theory is an especially attrac-
tive subject being an area in which the central problems are easily stated
but whose solutions (when they exist) often required ingenious methods. A
standard reference for the field is the book by Grimmet [25]. For the study
of percolation on general graphs, see [44].

In the standard model of percolation theory, so-called bond percolation one
considers the d-dimensional integer lattice, which is the graph consisting
of the set Z¢ as vertex set together with an edge between any two points
having Euclidean distance 1. Then one fixes a parameter p and independently



declares each edge of this graph to be open with probability p and investigates
the structural properties of the obtained random subgraph consisting of the
vertices Z? together with the set of open edges. The type of questions that one
is interested in are of the following sort. Are there infinite components? Does
this depend on p? Is there a critical value for p at which infinite components
appear? Can one compute this critical value? How many infinite components
are there? A closely related model is that of site percolation, in which nodes
are independently declared open (resp. closed) with a fixed probability p.

The study of percolation started in 1957 motivated by some physical con-
siderations and very much progress has occurred through the years in our
understanding. In the last decades in particular, there has been tremendous
progress in our understanding of the two-dimensional case (more accurately,
for the hexagonal lattice) due to Smirnov’s proof of conformal invariance and
Schramm’s SLE processes which describe critical systems.

1.2 Bond percolation and coupling

The concept of bond percolation introduced above works the same on every
(simple) graph G = (V, E) (having bounded degree): For every edge e € E
an independent coin is tossed and if it comes up heads (which has probability
p), we keep the edge, otherwise it is removed from the graph. The quantity
of interest (aiming at a first example of a non-trivial phase transition) is the
probability that a given vertex (call it the origin 0) is contained in an infinite
component in the random subgraph given by i.i.d. bond percolation on Z<.
Commonly, this probability is denoted by ©za(p) := P,(0 ~» oc0). We will
use the basic concept of coupling to verify that ©a(p) is increasing both in
p and d.

Definition 1

For two given distributions p and v, a coupling is a pair of random variables
(X,Y) defined on the same probability space so that X ~ p and Y ~ v.

For different values of p, we can couple the different bond percolation pro-
cesses in a simple monotone way: Given a sequence (Ue)c.cr of independent
unif ([0, 1]) random variables, we declare the edge e to be open in the bond
percolation with parameter p if and only if U, < p. In this way, the corre-
sponding random subgraphs are coupled in such a way that as p increases
from 0 to 1 the edge sets grow pointwise.
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Figure 1: Configurations of bond percolation on Z? for three values of the
parameter p: 0.3 (left), 0.5 (middle) and 0.7 (right).

Conseqently for any infinite graph G, the probability that p bond percolation
contains an infinite component, ©g(p), is monotone in p. In the same way,
it is monotone in the underlying graph: Since Z? can be seen as a subgraph
of Z3*!, we can consider the bond percolation for fixed p on Z¢ as a part of
the corresponding process on Z4+1!,

Next, we want to pin down how the probability IP,(0 ~» oco) relates to the
existence of an infinite component:

Proposition 1.1
Bond percolation with parameter p on G contains an infinite component with
positive probability if and only if O¢(p) > 0.

Apparently, only the “only if” part deserves a second thought. This is, how-
ever also rather straight forward using either union bound or alternatively a
technique called local modification.

In fact, on a (vertex-)transitive graph G, Birkhoff’s ergodic theorem (see
below) immediately implies that the existence of an infinite component is a
trivial event, i.e. has probability either 0 or 1. For those of you unfamiliar
with ergodic theory, let us just mention as a side note that a system is called
ergodic, if there exists a measure-preserving transformation 7' such that all
events F whose symmetric difference with their pre-image under 7' is a nullset
are trivial, i.e. for F such that P(EAT-}(E)) = 0, it holds P(E) € {0,1}.
Alternatively, you can use Kolmogorov’s 0-1 law here, see exercise 7.

Take a moment to verify that in one dimension, i.e. on Z the probability

P(0 ~ o0), that the origin percolates, is 0 for p < 1 and equals 1 in the
trivial case p = 1. Next, we want to understand that the picture in two (and



higher) dimensions is more interesting, i.e. the phase transition for bond
percolation on Z¢, d > 2 from finite components to an infinite one happening
at some critical p.(d) which lies in (0, 1).

Let C'(v) denote the component containing v € V' in our random graph. This
is just the set of vertices connected to v via a path of open edges. Of course
C(v) depends on the realization, but we do not write this explicitly. Note
that P, (|C(0)] = c0) = O(p).

1.3 The existence of a nontrivial critical value

The main result in this section is that on Z?, for p small (but positive)
©(p) = 0 and for p large (but less than 1) ©(p) > 0. In view of this (and
the monotonicity of ©), there is a critical value p.(2) € (0,1) at which the
function ©(p) changes from being 0 to being positive. This illustrates a so-
called phase transition describing a change in the global behavior of a system
as we move past some critical value.

The method of proof we will employ is commonly called the first moment
method, which just means you bound the probability that some nonnegative
integer-valued random variable is positive by its expected value (which is
usually much easier to calculate). In the proof below, we will implicitly apply
this first moment method to the number of self-avoiding paths of length n
starting at 0 and for which all the edges of the path are open.

Proposition 1.2
For bond percolation on Z? it holds ©(p) = 0, for p < %

ProoOF: Let A, be the event that there is a self-avoiding path of length
n starting at 0 using only open edges. For any given self-avoiding path of
length n in the original graph, the probability that all the edges of this given
path are open is p" (by independence). The number of such paths in Z? is
at most 4 - 3”71, since there are 4 choices for the first step and at most 3
choices for any later step. This implies that P,(A,) < 3 (3p)™ which goes to
0 as n — oo, since p < 3. As A, C {|C(0)| = oo} for all n (compactness
argument, see exercise 4), we have that ©(p) = P,(|C(0)| = o00) = 0. O

The method of proof for the other end of the p spectrum is often called a
contour or Peierls argument, the latter named after the person who proved

4



FLILIL LN L ILIL NN
O4-0-]-0--0-FO-FO- 10O 10O+1-0--0--0
—9——90 000 9o o o o o
111y ye
e & & e o e o o o ¢
CL LTI L el
1T e[ [T 1 ?°
S Eisasasnsasassensys
R R Y M D T D . -
04-0-0-[o-Fo-Fo-f o1 d0-01-0

RPN
Figure 2: The dual graph of the square lattice is again the square lattice..

a phase transition for another model in statistical mechanics called the Ising
model (see later). The first key ingredient is to introduce the so-called dual
graph (Z?)* which is simply Z* + (1,1), i.e. the ordinary two-dimensional
lattice translated by one half in each direction. Apparently, there is a 1-1
correspondence between the edges of Z? and those of (Z?)*, namely the pairs
intersecting. Given a realization of open and closed edges of Z?2, we obtain
a similar realization for the edges of (Z?)* by simply calling an edge in the
dual graph open if and only if the corresponding edge in Z? is open. Observe
that if the collection of open edges of Z? is chosen according to P, (as it is),
then the distribution of the set of open edges for (Z?)* will trivially also be
given by IP,. A next key step is a result due to Whitney which is pure graph
theory, namely that components in a graph correspond to closed circles in

the dual graph, see exercise 5.

Proposition 1.3
For bond percolation on Z? it holds ©(p) > 0 for p > %

PROOF: Let B, be the event that there is a simple cycle in (Z?)* surrounding
0 having length n, all of whose edges are closed. A similar counting argument

(see exercise 6) bounds the numer of such cycles from above by 4n-3"1. The
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probability that all edges of such a cycle are closed is (1 — p)™, by duality
and independence. Hence we have

1—0(p) = P,(|C(0)] < o0) = UB <ZIP’ §i4n~3”1<1—p)”
Zn 3(1—p n_l,

which is less than 1 as long as p > g.

Using local modification, we can extend this result all the way down to p > %:
Let N be chosen so that > °%  4n - 3" (1 — p)" < 1. Let E; be the event
that all edges are open in [N, N] x [N, N] and E, be the event that there
are no simple cycles in the dual surrounding [N, N|? consisting of all closed
edges. Then FE; and Es have positive probability and are independent so
that P,(|C(0)]| = c0) > P(Ey N Ey) > 0. O

Remark
Defining the critical parameter

pe =sup{p € [0,1] : O(p) =0} =inf{p €[0,1]: O(p) > 0}

and combining the two propositions above, we found p.(2) € [3, 2]. Further-
more, checking the proof of Prop. 1.3 once more, we showed in fact that O(p)
goes to 1 as p — 1.

In 1960, Harris [28] proved that ©(1) = 0 and the conjecture made at that
point was that p.(2) = % However, it took 20 more years before there was a
proof and this was done by Kesten [38]:

Theorem 1.4

The critical value for bond percolation on Z? is

5.

Without further complications we can conclude that the critical value p.(d)
is non-trivial even in dimensions greater than 2, see exercise 9.



1.4 Percolation function and uniqueness of the infinite
cluster

For general dimension d one usually writes ©4(p) for the probability that
the origin percolates in the i.i.d. bond percolation process on Z?. From the
previous section we know that ©;(p) = 1,—1}, which is rather uninteresting,
and that ©,(1) = 0, while ©y(p) > 0 for all p > 1. Also we argued that

Oun(p) > Oul). 2

In fact, the percolation function ©4(p) is not only non-decreasing in p but
also continuous in the supercritical regime (i.e. where it is positive):

Proposition 1.5
©4(p) is a right-continuous function of p on [0, 1].

PROOF: Let us write f,(p) for the probability that there is a self-avoiding
path of open edges of length n starting from the origin in the bond percolation
on Z4. f,(p) is a polynomial in p and by continuity from above and exercise
4 (with general dimension d in place of d = 2), we have f,(p) \, O4(p) as
n — 0o. Now a decreasing limit of continuous functions is always upper semi-
continuous and a non-decreasing upper semi-continuous function is right-
continuous. O

A much more difficult and deeper result is the left-continuity (due to van den
Berg and Keane [6]), giving the above mentioned central result:

Theorem 1.6
O©4(p) is continuous on (p.(d), 1].

The proof of this uses another central result, namely the fact that the infinite
cluster (if it exists) is unique, in other words there can only be one infinite
cluster in i.i.d. bond percolation on Z.

Theorem 1.7
In supercritical bond percolation on Z%, the infinite cluster is unique.

This is in fact true for all transitive graphs (with essentially the same proof),
but for convenience, we stick to Z?. The main tools in the elegant proof due



to Burton and Keane [8] are Birkhoff’s ergodic theorem, local modification
and the concept of trifurcation points.

The multivariate version of Birkhoff’s theorem, attributed to Zygmund (see
e.g. Thm. 10.12 in [37]), tells us that in an ergodic setting, spatial averages
converge to the probabilistic average. For ease of notation, we write A,, for
the box [—n,n]? of side length 2n centered at 0 and A(v) for a given event
centered at vertex v € Z%.

Theorem 1.8
For an ergodic process (such as bond percolation) on Z4, it holds

lim
1m
nvo0 [An]

Z Law) = P(A) almost surely.

vEA,

This immediately tells us that translation invariant events A such as “there
exist exactly 7 infinite clusters” have probability either 0 or 1. Using local
modification we arrive at the following lemma due to Newman and Schulman:

Lemma 1.9
The number of infinite clusters is either 0,1 or oo.

To rule out the possibility of infinitely many infinite clusters (in the super-
critical setting) on Z¢ (on other transitive graphs such as regular trees, this
does occur!), we make use of the fact that our graph is amenable, which es-
sentially means that volumes grow faster than surfaces for balls/boxes, via
so-called trifurcation points: Let us call the node v a trifurcation if

(a) v is contained in an infinite cluster

(b) C'(v) \ {v} consists of exactly 3 infinite (and no finite) clusters.

Lemma 1.10
If P,(there are infinitely many infinite clusters) = 1, as a consequence we
have that P,(0 is a trifurcation point) > 0.

Proor: Let A, be the event that at least 3 infinite clusters intersect the
box A, = [-n,n]? If there are a.s. infinitely many infinite clusters, we can
choose n such that P,(A,) is strictly positive (by continuity from below).
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Figure 3: The set of trifurcation points in a box.

Now let us tweak this event a little and write A/, for the event that there are
at least 3 infinite clusters, containing a vertex on the boundary of the box
A,. Then A, C A} and A, is independent of the configuration inside the
box. By local modification we can make 0 a trifurcation (with probability
bounded away from 0). O

To finish the proof of Theorem 1.7 one simply has to lead the implication
of Lemma 1.10 to a contradiction with the amenability of Z¢: Draw all
trifurcations together with three infinite (disjoint) paths that originate from
each of them (and might contain further trifurcations, see Fig. 3). While the
number of trifurcations would have a positive density (Lemma 1.10, together
with the translation invariance of percolation on Z? and Birkhoff’s Thm.),
hence their number in A, would grow linearly in the volume (i.e. like n?),
the points on the boundary of the box on the paths cannot (as the boundary
grows like nd=1).

In the following proof of Theorem 1.6 (continuity of the percolation function)
the uniqueness of the infinite cluster will come in at a crucial point:



PRrROOF: We use the standard coupling of bond percolation on Z¢ for different
p, which gives that {e is p;-open} C {e is ps-open} for all p; < po.

Now let C, be the p-open cluster of the origin. In the standard coupling,
obviously C,, C C,, if p1 < py and O(p) = P(|C,| = 00). Next, note that

lim O(p") = lim P(|Cy| = 00) = P(|Cpy| = oo for some p' < p).

/P p'/'p
The last equality follows from using countable additivity in our big proba-
bility space (one can take p’ going to p along a sequence). Due to the fact
that {|C,y| = oo for some p' < p} C {|C,| = oo}, what we need to show is

P({|C,| = 00} \ {|Cy| < o0 for all p’ < p}) = 0.

Let « be such that p.(d) < v < p. Then almost surely there exists an infinite
v-open cluster C' (not necessarily containing the origin). Now, if |C,| = oo,
then, by uniqueness applied to the p-open edges, we have that C' C (), a.s.
If 0 € C, we are of course done with p’ = . Otherwise, there is a p-open
path I' from the origin to C'. Let X = max{U. : e € I'} which is a.s. strictly
smaller than p. So as soon as p’ is such that X,~v < p’ < p, we have that
there is a p’-open path from 0 to C' and therefore |Cpy| = 0o as desired. [

Combining the above results, we know that the percolation function can only
have a jump in the critical point p.(d). In fact, for the square lattice, Harris’
result shows it doesn’t. Hence O4(p) qualitatively looks like depicted below:

4 — P
0 1/2 1

Figure 4: The percolation function for the square lattice.
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Nobody expects to ever know what p.(d) is for d > 3 but a more interesting
question to ask is what happens at the critical value itself, i.e. is ©4(p.(d))
equal to 0 or is it positive (hence the percolation function not continuous).
The common belief is that ©, does not have a jump irrespectively of dimen-
sion. Interestingly, besides d = 2, this is also known to be the case for d > 19
(a highly nontrivial result by Hara and Slade [27] using a technique called
lace expansion). Rather recently the dimensions 11 to 18 have been solved
with similar methods but for 3 < d < 10 it is not known and viewed as one
of the major open questions in the field.

Variants of bond percolation that received ample attention are the aforemen-
tioned site percolation and a non-static version called dynamical percolation,
in which the status of each edge (open/closed) is updated independently when
a random Exp(1) time associated with the corresponding edge has elapsed.

Exercise 1

Describe how to couple the binomial distributions Bin(n, p) and Bin(m, q),
where n < m and p < ¢ in a monotone way, i.e. define random variables
X ~ Bin(n,p) and Y ~ Bin(m, q) s.t. P(X <Y) = 1. Is such a monotone
coupling possible if one of the two conditions (n < m, p < q) is dropped?

Exercise 2 (Doeblin’s maximal coupling)

Describe a way to maximally couple two discrete distributions p, v in the
sense that the pair (X,Y), where X ~ g and Y ~ v, fulfills P(X =Y) >
P(X’ =Y") for all possible couplings X' ~ pu, Y/ ~ v.

Exercise 3
Show that ©(p) = 1 is impossible for all p < 1.

Exercise 4

For any subgraph of Z* (hence any realization of bond percolation), show
that |C(0)] = oo if and only if there is a self-avoiding path from 0 to oo
consisting of open edges (i.e. containing infinitely many edges).

Exercise 5

Verify that the component containing the origin is finite if and only if there
exists a simple cycle in (Z?)* surrounding 0, consisting of all closed edges.
The following picture (from [25]) might inspire your ideas:

11
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Exercise 6

Show that the number of cycles in Z? around the origin of length n is at most
4n - 3771

Exercise 7
Using Kolmogorov’s 0-1 law (which says that all tail events have probability
0 or 1), show that P,(there exists an infinite component) is either 0 or 1.

(If you are unfamiliar with Kolmogorov’s 0-1 law, one should say that there
are many (relatively easy) theorems in probability theory which guarantee,
under certain circumstances, that a given type of event must have a proba-
bility which is either 0 or 1. But they don’t tell which of 0 and 1 it is, which
is funnily enough almost always the harder thing to show).

Exercise 8

In the proof of Prop. 1.5: If you don’t know what words like upper semicon-
tinuous mean (and even if you do), redo the second part of the proof with
your hands, not using anything.

Exercise 9

Show that the phase transition for bond percolation on Z? is non-trivial, in
the sense that p.(d) € (0,1), for all d > 2: First, mimick the proof of Prop.
1.2 to show that p.(d) > 55, i.e. generalize the statement po(2) > % to
general dimension d. Then: How did we already prove p.(d) < 27

12



2 First-passage percolation, branching ran-
dom walk and frogs

A model closely related to that of bond percolation — and more suitable to
be taken as a simplification of liquid permeating porous material — is that of
first-passage percolation (FPP): To begin with, all edges are closed and there
are i.i.d. waiting times associated with each edge. At time t = 0, only the
origin 0 is considered to be active (wet). Once one of the endpoints of an
edge e = (u,v), say u, becomes active, the clock starts ticking and once the
waiting time attached to e has elapsed, the edge is declared open and the
other endpoint v becomes active (if it isn’t already).

The other two models introduced in this section — the branching random
walk (BRW) and the frog model — are interacting particle systems ([43] is
an extensive standard reference for this field): In BRW particles reproduce
by giving rise to offspring according to a given distribution. The offspring
is placed around the site of the mother particle independently and with the
same (local) law. Similar to the growth of the “wet region” in FPP one can
track the set of sites visited by particles and analyze its growth and shape.

The frog model operates somewhat similarly to BRW, however, there is no
reproduction component: At the beginning sleeping frogs are placed at the
sites of the lattice (in the simplest version one per site, but most work deals
with general i.i.d. initial configurations with at least one frog at the origin).
At the start, only all frogs located at the origin are considered active. Active
frogs perform (independent) simple random walks on the lattice, waking up
all frogs at sites they visit.

At first glance, there is no phase transition to be expected in these mod-
els (as the only parameters potentially inducing one involved here are in the
distribution of the waiting time (FPP), the offspring and displacement distri-
bution (BRW) and the initial configuration of frogs respectively). But once
we consider a competition version of these models, this question becomes
interesting (more details see the seminar talks next week).

13



2.1 First-passage percolation

Again, we will restrict our attention for this stochastic growth model to the
lattice case, i.e. the graph Z¢. This model has been extensively studied in
the literature, and was introduced by Hammersley and Welsh in 1965. While
it can be defined (and analyzed) for different (non-negative) distributions
for the waiting times, the standard model assumes i.i.d. waiting times that
are exponentially distributed with parameter 1 (for good arguments why, see
exercise 10).

Let again E denote the set of edges of the nearest-neighbor lattice Z? and
(Te)ecr denote a collection of i.i.d. random variabels, referred to as edge
passage times. Define the passage time of a path I' as T'(I') := > 7. In
particular, one is interested in the travel time, also referred to as first-passage
time, between two vertices x and y in Z¢, which is defined as

T(xz,y) :=inf{T(I") : T is a path from x to y}.

As mentioned before, first-passage percolation is often motivated as a model
for the spatial propagation of a fluid when injected at the origin of the lattice.
The term passage time reflects the interpretation of the random variables as
the time needed for a fluid to traverse the edge. Similarly, first-passage
times (between two points) are commonly interpreted as the time it would
take a fluid injected at one point to reach another. Relevant questions aim
to understand the spatial growth of the fluid injected at the origin of the
lattice. How far will the fluid reach in a fixed time interval? How does the
number of wet sites grow in time? What can be said about the shape of the
set of wet vertices? All these questions concern the central object defined as

W, :={z€Z*: T(0,z) <t}, fort >0,

which can be interpreted as the wet region at time ¢. Investigating how first-
passage times behave is essential in order to understand how the wet region
evolves in time. However, the known picture is still far from complete. A
survey by Kesten on the developments in first-passage percolation can be
found in [39]; a more recent reference is the survey by Howard [35].

Particular efforts have been invested in studying the propagation of the fluid
in coordinate directions. If ey = (1,0,...,0) denotes the unit vector along
the first coordinate axis of Z¢, this corresponds to studying the (random)

14



sequence (7'(0,ne;),en. Basic questions about first-passage times were stud-
ied already in Hammersley and Welsh [26]. Under which conditions, and in
which sense does T'(0,ne;)/n converge as n — oo? Is the expected travel
time E[T'(0, ne; )] increasing in n? First-passage times have a complex depen-
dence structure, however, as defined they are easily seen to be subadditive,
Le.,

T(x,y) <T(x,2) +T(z,y), foranyx,y,z¢cZ"

Since the distribution of T'(x,x +y) does not depend on the site x € Z% it
follows immediately from Fekete’s lemma (see exercise 13) that the following

limit exists: EIT(0
o = lim 2L (Omel)]

n—00 n

While already Hammersley and Welsh proved in 1965 that lim sup % T(0,ne;)
converges almost surely, applying Kingman’s Subadditive Ergodic Theorem
(a handy version of which can be found for example in [42], see below) readily
gives a much stronger statement.

Theorem 2.1 (Subadditive Ergodic Theorem)
Let { Xonn}o<men be a collection of random variables satisfying the following
four conditions:

(a) Xon < Xowm + Xinp for all0 <m < n.
(b) The distribution of the sequence { X, mik }ren does not depend onm > 0.
(c¢) The sequence { Xim, (k+1)m fren @S stationary for each m > 0.

(d) For all n € N, E[|Xo,|] < oo and E[Xy,] > —cn for some constant
cecR.

Then the following conclusions hold:

(1) The limit v = lim,,_, %E[Xo,n] exists and is equal to inf,cy % E[Xo.5]-

(11) X :=lim, o %Xo,n exists almost surely and in L', where E[X] = ~.
Moreover, if all sequences in (c) are ergodic, then X =~ almost surely.

Applying this to the set of random variables {T},e,.ne; fo<m<n, We Obtain the
following

15



Proposition 2.2
For FPP on Z¢ with L' waiting times, it holds

T(0
lim M = lie, almost surely and in L.
n— 00 n

ProOF: Conditions (a), (b) and (c¢) in the Subadditive Ergodic Theorem
are easily verified from the subadditivity and the translation invariance of
the underlying i.i.d. structure of the lattice. To verify (d), it suffices to
show E[T(0,e1)] < oo, since 0 < E[T(0,ne;)] < nE[T(0,e;)] by the non-
negativity and subadditivity of passage times. This, however, is immediate
as T(0, ey) is dominated by the edge passage time 7,,. For more heavy-tailed
edge passage times (that are not L'), slightly more work and a different
(weaker) moment condition are needed. Hence, the conditions of the Sub-

additive Ergodic Theorem are satisfied, and the limit lim,, . % exists
almost surely and in L!.
It remains to show that the limit is constant. Let again A,, = [—n,n]? denote

the box of side length 2n centered at 0. With a slight abuse of notation, let
T (A, ner) := min,ep,, T(v,nep). Obviously,

T(Ap,ne;) <T(0,ney) <T(Ap,nep)+ Z Te.

e€Ny,

So we can conclude for every m > 0 that

lim T(Amanel) — lim T(()?nel)

n—00 n n— oo n

almost surely and in L'.

However, since T'(A,,,ne;) is independent of 7. for all e € A,,, the limit
lim,, 00 M has to be as well. Since this holds for all m > 0, Kolmogorov’s
0-1 law imphes that it has to be constant (as the limit being > ¢ constitutes

a tail event). O

From Proposition 2.2 we obtain the propagation of the fluid in coordinate di-
rections. Similarly, the Subadditive Ergodic Theorem applies to the sequence
{To.nz}nen for any z € Z?. For practical purposes it is handy to extend the
definition of passage times between vertices on Z¢ to pairs of points in R%:
For x,y € RY, define T'(x,y) := T'(x*,y*) where x* and y* denote the points
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in Z< closest to x and y, respectively (choosing the points closest to the ori-
gin in case of a tie, say). Then it is in fact possible (although not immediate
from the Subadditive Ergodic Theorem) to show that for any x € R? there
exists the limit
T(0,nx
tyx = lim g

n—00 n

almost surely and in L.

This limit is often referred to as time constant. Trivially, in one dimension,
the time constant is just the expected value of the edge passage time (see
exercise 12). Not much is known about the exakt values of u in higher
dimensions (not even in the coordinate axis direction). However, a lower
bound pe, > 0.298 on the square lattice Z? for Exp(1) edge passage times
was derived by Janson [36] already in 1981.

Hammersley and Welsh further conjectured that the expected travel time
E[T(0,ne;)] is non-decreasing in n (for general edge passage time distribu-
tions). Despite the intuitive appeal the conjecture has, van den Berg [5]
constructed an example that essentially shows that the conjecture is false for
small n. It remains an open problem to find out whether the expected travel
time could be monotonic for sufficiently large n.

2.2 The shape theorem

The convergence to the time constant describes the spatial growth of the
process in any fixed direction. To understand the growth of the wet region,
this convergence needs to be concluded in all directions simultaneously. This
can be obtained, and was first realized by Cox and Durrett [13] for general
waiting time distributions. In terms of first-passage times, their result can

be stated as follows:
T(0,z) — iy
lim sup M =0 almost surely.
— ]l

Equivalently, this result can be stated in terms of the wet region. Just as
first-passage times were extended to pairs of points in R?, it is convenient to
replace W, which was defined as a subset of Z¢, with a corresponding subset
of R For t >0, let W, := {x € R?: T(0,x) < t}. The above result can
then be described as how closely W; resembles the set

W::{XGRd: px < 1}
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often referred to as asymptotic shape.

Formulated in terms of the wet region, the result by Cox and Durrett is
known as the Shape Theorem:

Theorem 2.3
Consider first-passage percolation on Z% with i.i.d. passage times (fulfilling a
weak moment condition). If pe, > 0, then for all e > 0 almost surely

(1—-e)W C %Wt C(1+e)W, fort large enough.

The geometric properties of the set V can in fact be divided into two regimes:

Proposition 2.4
(i) W is compact, convex and has a non-empty interior when jie, > 0

(ii) W = R%, when pe, = 0.

In the first regime the Shape Theorem states that the wet region grows with
linear speed. Except for convexity (and apparent symmetries with respect to
coordinate axis), it has turned out very hard to prove further characteristics
of W in this regime. The second case in turn translates to K C %Wt almost
surely for arbitrary compact set K C R? and ¢ large enough. When it comes
to the characterizations of these two regimes, Kesten [39] showed that e, = 0
if and only if P(7. = 0) > p.(d), where p.(d) as before denotes the percolation
threshold for bond percolation on the Z? lattice.

To prove Prop. 2.4, one first has to establish appropriate properties of the
time constant, namely:

(a) Linearity: pqx = a jix for all @ > 0 and x € R?
(b) Triangle inequality: fixiy < pix + py for all x,y € R?

(c) Continuity: px — pty < dE[T(0,e1)] - ||z — ]|

To verify these is rather straight forward: For a € N it holds

E(T(0
Max:ahmwzm_
n—oo an
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The extension to non-negative real a is done via a comparison of E[T'(0, anx)]
and E[T(0, |an]|x)], where |.| denotes the integer part. The difference is
casily seen to be bounded. For x,y € Z¢ the triangle inequality follows
directly from the subadditivity and a similar comparison can be made to
extend it to arbitrary x,y € RY. For the continuity note that

E[T(0, nx)] — E[T(0, ny)]| < [E[T(nx, ny)]|
< E[T(0,e1)] [[(nx)" — (ny)"[lx
< dE[T(0,e))] ||(nx)* — (ny)*].

Dividing both sides by n and then sending it to infinity shows the claimed
continuity property.

With these in hand, we can show Prop. 2.4:

PROOF:

(i) The asymptotic shape W is convex in both regimes. To see this, note
that x is contained in W if and only if ux < 1 by definition. Thus, if x
and y belong to W, and A € (0, 1), then also Ax + (1 — A)y belongs to
W by linearity and triangle inequality. The remaining two properties
of W when e, > 0 can be deduced with help of the convexity. First,
note that by linearity, there are @ > 0 and b < oo such that e, <1
and ppe, > 1. Together with convexity and reflexion symmetry of W,
the former implies that ¥V has non-empty interior, whereas the latter
that W is bounded. To prove compactness, it remains to conclude that
W is closed. However, that is immediate from the continuity property.

(ii) To conclude that W = R? when e, = 0, it suffices to prove that either
iy = 0, for all x or py # 0, for all x £ 0. Assume that the latter is
not the case. First, assume that pe, = 0, from which it follows that
pe; = 0 for each j = 1,2,...,d by symmetry. That px = 0, for all x
is now immediate from linearity and triangle inequality. In general, if
1x = 0, for some x # 0, then we can in a similar fashion, via reflexion,

obtain d vectors x1,Xa, . .., Xy that span R? and fulfill pix; = 0 for each
7 =1,2,...,d. Again, that u, = 0, for all x is immediate from linearity
and triangle inequality. O

To show, that the Shape Theorem in fact is equivalent to the result by Cox
and Durrett stated at the beginning of this section is not very deep, but
another slightly technical matter.
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2.3 Competition

Much later, Haggstrom and Pemantle [32] introduced the idea of two com-
peting growth processes into FPP, a model that became known as two-type
Richardson model. They considered a process on the square lattice, that
starts at time 0 with an infection of type 1 at 0 and an infection of type 2 at
another site x, all other sites being healthy. The model can then be described
in first passage percolation terms: a site y is infected at time 7'({0,x},y),
which we define as the infimum, over all paths starting at 0 or x and ending
at y, of the sum of the passage times along the path. Since the distribution of
the passage times of the edges Exp(1) is continuous, it is not hard to see that
the infimum is in fact a.s. a minimum which is attained for a unique path. If
this fastest path starts at 0, then y gets infection of type 1, otherwise it gets
type 2. One may think of the two-type Richardson model as a crude model
for two growing bacterial colonies (or two political empires) competing for
space. It may happen that at some early stage, one of the types of infection
completely surrounds the other type which then is prevented from growing
indefinitely (see exercise 14).

Write A for the event that this does not happen, in which case both types of
infection will grow indefinitely. The first question one would like to answer
about the two-type Richardson model is whether or not P(A) > 0 (it is
obvious from exercise 14 that P(A) < 1).

Their first central result shows that the answer to this question does in fact
not dependent on x:

Proposition 2.5

With Po x(A) denoting the probability of A with the starting positions 0 and
x respectively, it holds for any X,,xs € Z2:

Pox,(A) >0 <= Pox,(A) > 0.

Intuitively, the least favorable starting position for coexistence, in the sense
that both types occupy infinitely many sites, are neighboring initial seeds.
In this respect, the main result of Haggstrom and Pemantle can be seen as
an extreme-case analysis:

Theorem 2.6
With p denoting the time constant along the coordinate azes on Z2, it holds:

Poe, (4) > 21,
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Using the lower bound by Janson, this implies Pg e, (A) > 0.064.

The proof of this theorem is based on a proposition stating that for any ¢ > 0
there exists some integer m > 0 so that

limsupIP’[T(O, (n,m)) > T(O, (n — 1,m))] > 2’%1 — €,

n—o0

the latter being bigger than 0.532 (using Janson’s bound). In words, this
means that there are sites in Z? arbitrarily far away from the origin which
distinctly “feel” which direction the infection is coming from. While the
proof of this proposition is rather technical, Prop. 2.5 can readily be settled
using local modification:

PROOF: Let us color type 1 vertices blue and type 2 vertices red. We can
choose t > 0 and then N big enough such that the set W; of all vertices
colored at that time (eiter blue or red) contains a box of side length say
2 max{||x1||, ||x2||} centered at the origin and is contained in a box of side
length N with probability bigger than 1 —Pg «, (4). Note that the set of both
blue and red vertices always form a (path-)connected set. By choice of ¢, the
fact that N is finite and since Pg «, (4) > 0 there exists a configuration on W}
that has a positive probability conditioned on A. Keeping the configuration
on the boundary of W; fixed, we can change the configuration inside W;
such that O is still blue, both x; and x5 are red, it coincides with the old
configuration on the boundary on W, and the sets of both colors are still
connected. Since this configuration has positive probability to occur at time
t, when starting at sites 0 and x, respectively, by the strong Markov property
it follows that Pg x,(A4) > 0 as well. O

In a second paper two years later, the same authors proved a somewhat pecu-
liar result for the same model but with the infections spreading at different
rates (by scaling, one can be chosen to have passage times Exp(1), while
the other has Exp(A) for some A # 1). It states that for all but at most
countably many values of A the event A has probability 0. These potential
exceptional values are due to a Fubini-type argument in the proof, but no
one believes they actually exist. A few years later, their initial result (about
possible coexistence) was generalized to higher dimensions (among others by
Garet and Marchand [22], using proof techniques not dependent of the pla-
nar structure of Z? or the bound on the time constant). The key idea in the
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proof of Garet and Marchand is to take starting positions 0 and ney, for n
fixed large enough, and show that the passage time from ne; to —me; is
substantially larger than the passage time from 0 to —me; for large enough
m. This can be used to show that given these starting positions both types
will dominate on “their side”in the first coordinate direction. In view of
Prop. 2.5 (generalized to higher dimensions) this is all that was needed. So
the following conjecture is almost fully proved:

Conjecture 2.7
For the two-type Richardson model on Z¢, d > 2, with infections spreading
from 0 and e; at rates 1 and A respectively, it holds

P(A) >0 if and only if A = 1.

Shortly after, Garet and Marchand also extended the result that two infec-
tions spreading with two different passage time distributions (one stochas-
tically smaller than the other) cannot coexist, to distributions other than
exponential [23]. In this more general setting they showed, however, not
that the event A (both occupy infinitely many sites; for distinction reasons
sometimes called weak coexistence) has probability 0, but the smaller event
that both types occupy at least a linear fraction of the sites (correspondingly
called strong coexistence).

2.4 Frogs

The so-called frog model on Z? is driven by moving particles (frogs) on the
sites of the d-dimensional lattice. Each site x € Z% is assigned an initial
number 7(x) of particles, where {n(x)}yez¢ are i.i.d. Each particle is then
independently equipped with a discrete time simple symmetric random walk.
At time 0, the particles at the origin are activated, while all other particles
are sleeping. When a particle is activated, it starts moving according to its
associated random walk so that, in each time step, it moves to a uniformly
chosen neighboring site. When a site is visited by an active particle, any
sleeping particles at that site are activated and start moving (independently).
If the origin is non-empty, this means that the set of activated particles grows
to infinity.

The frog model has previously been studied, for example with respect to
transience/recurrence [47], the shape of the set of visited sites [2, 3] and ex-
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tinction/survival for a version of the model including death of active particles
[1].

With W, denoting the set of sites visited by time ¢, or rather it continuous
embedding, i.e.

W, = {X + (—%, %]d : x has been visited by an active particle at time t},

very similar to Theorem 2.3 (FPP), the Shape Theorem for the frog model
reads as follows:

Theorem 2.8

Consider the frog model on Z¢ with the initial number of frogs being i.i.d. 1.
If n(0) > 0, then there is a non-empty convex set W such that for all ¢ > 0
almost surely

(L—e)W CIW, C(L+e)W, fort large enough.

In [2] Alves, Machado and Popov first proved this result for the original
version of the model with deterministic starting configuration (one frog per
site) and then generalized it together with Ravishankar to i.i.d. random initial
numbers per site. The main obstacle in this generalization in fact posed the
sites that are empty in the initial configuration.

When it comes to the model with death, i.e. where active particles vanish in
each time step with probability 1 — p the same set of authors found another
interesting phase transition (in the parameter p) concerning the survival of
the process as a whole:

Theorem 2.9
For the frog model with death (survival probability p < 1) on Z%, it holds the
following:

(i) If E(log(max{n,1})%) < oo, then p.(n) > 0 and

(i1) ford > 2, p.(n) <1, if not n = 0.

Here p.(n) of course denotes the infimum of all p for which the process
survives with strictly positive probability. In one dimension, the process
almost surely dies out for all p < 1 (given the weak moment condition
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E(log(max{n,1})) < c0), so that the phase transition one Z is again trivial
in the sense that p.(n) = 1.

Together with Mia Deijfen and Fabio Lopes, we introduced a two-type ver-
sion of the model (without death), where an active particle can be of either of
two types [17]. Activated particles are assigned the same type as the particle
activating them (with an arbitrary tie breaker where necessary). We studied
the possibility for the types to activate infinitely many particles and inves-
tigated in particular the event of (weak) coexistence, which is said to occur
if both types activate infinitely many particles. Our results make heavy use
of the shape theorem as well as the technique used by Garet and Marchand
for FPP and in general resemble the results for competing FPP (for more
details, see [17] or the seminar talk next week).

2.5 Branching Random Walk

As alluded to above, the model of BRW on Z? proceeds (in discrete time)
as follows: Given an offspring distribution n and a local displacement dis-
tribution v, in each time step existing particles vanish and each of them
independently gives rise to a random number of particles distributed accord-
ing to n, which are independently placed (according to v) around the site
where the mother particle vanished.

BRW has been a very active topic in contemporary probability the last two
decades, see [45] for a survey covering mainly the one-dimensional case. BRW
in higher dimensions is less well understood, but shape theorems (for the set
of sites visited by particles) can be found in [7] and [12]. The model is well
suited to describe spatial evolution of biological populations and versions of
the model incorporating competition have been analyzed in this context.

The competition in these models, however, amounts to a single type of par-
ticles competing with each other in that there are constraints on the particle
density or mass. An example of a two-type competition model was provided
by Etheridge [20], in which the number of particles in bounded regions is
limited. Together with Mia Deijfen, we introduced and analyzed a model, in
which there are no limitations on the particle density, but competition arises
in that the first type to reach a site is given a perpetual local advantage
by claiming the site for its type. Interaction arises as particles landing on
sites that are already claimed by the other type, adopt the type of the site
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(i.e. switch their type) with probability p € [0,1]. Since there is no obvi-
ous monotonicity in p (as this parameter governs the strength of interaction,
hence affects both types simultaneously) this model is considerably harder
to analyze, but we managed to derive at least partial results concerning the
probability of coexistence (see [18] or the seminar talk next week).

Exercise 10
A continuous random variable X is called exponentially distributed with
parameter A > 0, if it has the density

f(z) = X exp(—Azx), forxz >0.

Verify the following three properties:

(a) Scaling: If X ~ Exp()), then ¢X ~ Exp(2) for any ¢ > 0.

(b) Minimum: If X ~ Exp(\;) and Y ~ Exp(Aq) are independent, it holds

min(X,Y) ~ Exp(A; + Ag).

(¢) Memoryless property: The conditional distribution of X ~ Exp()) given
the event {X > ¢} is again Exp(\), for any fixed ¢ > 0.

Hint: The proofs of both (a) and (b) are very straight forward using the cdf.

Exercise 11

Show that the convolution of independent Exp(A) distributed random vari-
ables is gamma distributed, more precisely if X; ~ Exp()) are independent,
then X; + ...+ X, ~['(n, A), where a I'(n, \) random variable has density

f(z) = ﬁ 2" texp(—Az), forx >0.

Exercise 12

Use the Subadditive Ergodic Theorem to conclude that the time constant for
FPP on Z with ii.d. L' edge passage times equals the expectation of this
distribution. So for example if the waiting times are Exp()\), we get p = %
Do you recognize that this is a rather unconventional way of reproving the
strong law of large numbers (SLLN)?
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Exercise 13

Prove Fekete’s Lemma, which goes as follows:

Let f : N — [0;00) be subadditive, i.e. such that for all m,n € N it holds
f(m+n) < f(m)+ f(n). Then lim@ = inf@.

Hint: Fix m € N and for n € N, write n = mq+r, where 0 < r < m (division
with remainder), in order to deduce from subadditivity that

ngg—lf(m)—i-l max f(m +1).

n " 0<i<m
This implies lim sup @ < % and taking the infimum over m completes
the proof.

Exercise 14

Given that the two types of infections in the two-type Richardson model on
77 start at sites 0 and a neighboring site and spread with Exp(1) edge passage
times, calculate a lower bound on the probability that one will completely
surround the other.

Hint: Exercises 10 and 11 might be helpful here. With little (integration)

work you can show P, (A°) > %52 = 0.000128.

3 Magnets and opinion formation processes

3.1 Ising Model

Just like water changing its state of matter depending on the temperature,
ferromagnetic material undergoes a phase transition in the sense that macro-
scopic properties of the matter are changed. Well above a certain critical tem-
perature, the ferromagnetic material is unmagnetic on a macroscopic scale (if
not exposed to a strong external magnetic field); well below this temperature
however, a phenomenon that is called spontaneous magnetization occurs: the
microscopic magnetic dipole moments, originating from atomic spins, start
to align and turn the material into a magnet — even in the absence of an
external field.

Already in 1907, Pierre Weiss tried to explain this behavior, building on ear-
lier work by Pierre Curie. He used an approach that became known as mean
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field theory: In a large statistical system, the effects of all other particles
on one fixed particle is replaced by their statistical average. This approx-
imation turns a many-body problem with interactions, which in general is
very difficult to solve exactly, into a one-body problem with external field.
(Clearly, this is a rather crude simplification as the fluctuating interaction of
the considered particle with the rest of the system is approximated by a time-
independent effective field. Nevertheless, it made the spin problem tractable
and allowed Weiss to draw conclusions explaining the two different phases
of ferromagnetic material. The mean field theory approximation is however
only qualitatively accurate and fails to give satisfactory answers to questions
about the behavior near the phase transition. For temperatures near the
critical one, the actual local magnetic fields are rapidly varying in time and
consequently turn their statistical average into a quite poor representation
of their effect.

A slightly different approach to explain ferromagnetic behavior was the fol-
lowing theoretical model that physicist Wilhelm Lenz invented in 1920 and
proposed to his student Ernst Ising for further studies two years later: A
collection of atoms is arranged to form an atomic lattice represented by a
graph G = (V, E). Their elementary magnetic dipoles, often simply called
spins, can be either in the state “up” or “down”, represented by the numer-
ical values +1 and —1 respectively. All spins taken together form what is
called a spin configuration o € {—1,+1}V. Neighboring spins that agree
correspond to a lower energy than those that disagree. On a finite graph, the
energy corresponding to a given configuration is simply calculated as twice
the number of disagreeing neighboring pairs:

H(0)=2 Y Liowrew)
(u,v)EE

Although the model can be defined on general graphs, we will consider the
spins to be arranged on the lattice Z?. The one-dimensional Ising model was
solved by Ising (1925) alone in his 1924 thesis, it has no phase transition.
The two-dimensional Ising model on the square lattice Z? is much harder
(in his thesis Ising erroneously claimed that his results should generalize to
higher dimensions) and was only given an analytic description much later, by
Lars Onsager in 1944. It is, however, one of the simplest statistical models to
show a phase transition. Though it is a highly simplified model of a magnetic
material, the Ising model in three dimensions can still provide qualitative
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results applicable to real physical systems.

Let us first properly define the Ising model or rather the corresponding Gibbs
measure on a finite graph:

Definition 2

For a finite graph G = (V, F) and the inverse temperature 3 > 0, the Gibbs
measure l/g on {—1,+1}" is defined as the probability measure that assigns
to each configuration ¢ the probability

o) = e O,

where the partition function Zg => e~ PH(@) is just a normalizing constant.

To get started, think about what happens in the extreme cases, namely 5 — 0
(corresponding to infinite temperature) and § — oo (corresponding to the
zero temperature limit), see exercise 15. If you are familiar with Markov
chains, try to figure out the Gibbs measure on a finite path (exercise 16).

The Ising model on a general graph G = (V| F) satisfies what is called the
Markov random field property: Let X be a random spin configuration on GG
distributed according to Vg and for W C V let 0W denote the outer vertex
boundary of W (i.e. the set of nodes outside of W that have a neighbor in W).
Then the conditional distribution of X (W) given X (W) depends on X (W°)
only via X (0W). In this context, W¢ :=V \ W denotes the complement of
the set W.

Before we turn to Z?, let us introduce another tool that is particularly use-
ful when working with the Ising model and an elegant link between bond
percolation and the former:

Definition 3
For a finite graph G = (V, E) and parameters p € [0,1], ¢ > 0, the random-
cluster measure ufs? on {0,1} is given by

P (n) = ﬁ Hpn(e)(l _ p)l—n(E)qk(n)7
eclk

for every n € {0,1}F, where k(n) denotes the number of connected compo-
nents in (V, E,)) and E, denotes the subset of edges with n(e) = 1.
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Note that ¢ = 1 gives back the ordinary i.i.d. bond percolation on G. For
q = 2 we can couple the Ising model and the random-cluster measure on GG
in the following way:

(a) Assign the spins +1 and —1 to all vertices via fair independent coin flips.

(b) Independently of the spins, assign values 1 and 0 to the edges via inde-
pendent biased coin flips (1 has probability p, 0 probability 1 — p).

(c) Condition on the event that no two vertices with different spin are linked
by an edge with value 1.

Then the projection of this conditional distribution on the edges equals the
random-cluster measure % and its projection onto the nodes (i.e. {—1,4+1}"
equals the Gibbs measure l/g with § = —% log(1 — p). (for a full proof, see
Thm. 2.5 in [29], for intuition why this should be true, see exercise 17).

This coupling comes with a number of useful implications:

Corollary 3.1
(i) First pickY € {0,1}F according to ii%* and then pick X € {—1,1}V by
assigning spins to the connected components by independent fair coin
flips. Then X has distribution l/g with f = —% log(1 — p).

(ii) First pick X € {=1,1}V according to v and then for each edge e =
(u,v) € E independently, set

1—e? ifX(u)=X

1 with probability ¢ ¥ <U) ®)
0 otherwise

Yie)= 28 f X(u) = X

0 with probability ¢ ¥ (u)— (©)
1 otherwise.

Then'Y € {0,1}F is distributed according to 1i%° with p =1 — =2,

Corollary 3.2 (Positive correlation)
For the Ising model on G = (V, E) with 8 > 0, spins are positively correlated,
i.e.

ELX (u) X (v)] = E[X ()] - E[X (v)].
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PRrROOF: Pick X as in Cor. 3.1 (i). Then

E[X (u) X ()] = P(X (1) = X(0)) - P(X(u) # X(v))

=2P(X(u) = X(v)) —1=2P(X(u) = X(v)) — 1

:2]P’(u~y=>v) —f—QP(U')ZU,X(u) =X(v)) -1

Lemma 3.3
For u% any edge e = (u,v) € E and any n' € {0, 1}E\e} it holds

. n
7 P if u~ v
e (ne) =1|1) = { ) |
m otherwise.

PROOF: To see this, it is easiest to look at the odds ratio:

pii(eis open|yf)  J i ifuu
D¢ is closed |n') P
pe'( |7) (1_pp)q if u +~ v. .

d
Let p =<y denote stochastic domination of a measure p’ over p, which
corresponds to the existence of two random objects X ~ p and Y ~ pu’ such
that P(X <Y) = 1.

Lemma 3.4

Forq>1 and p* := it holds

__ b
p+(1-p)gq’

The easiest way to prove this is to pick Xy ~ p2" and Yy ~ p&? and
then update one edge at a time simultaneously for both by resampling it
(this is called Gibbs sampler) with the appropriate probabilities and using a
monotone coupling (and Lemma 3.3). Then X|g = Y|g. In the same way,
the second domination can be proved.

Using the same type of argument (see Thm. 3.5 in [29] for a detailed proof),
one can prove Holley’s Theorem:
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Theorem 3.5
For finite V' and finite state space S C R, let p and u' be probability measures
on SV with full support. and let X ~ p and X' ~ 1/ be the corresponding
SV -valued random objects. If for allv € V, s € S and all n,& € SY\F with
n =X & it holds

P(X(v) > s| X(V\{v} =n) <P(X'(v) > s| X'(V\ {v} =€),
then p % .

With all this in hand, we can move on and lift the definition of the Ising
model/Gibbs measure to the (infinite) lattice:

Definition 4

A probability measure v on {—1,41}2" is called a Gibbs measure for the
Ising model with inverse temperature 8 > 0 on Z? if for all finite W C Z¢,
all o/ € {—1,+1}°" and all o € {—1,+1}" we have

y(X(W) =0 X(&W) _

1
= 75 exp ( — 20 ( Z 1o (u)£o(w)} T Z ﬂ{o(u)aﬁo’(v)})

u~v u~v

u,veW ueW, vedW

and v satisfies the Markov random field property.

For the lattice (or infinite graphs in general) the question of existence and
uniqueness of Gibbs measures becomes interesting. And it is here we find
the phase transition alluded to earlier:

Theorem 3.6
For the Ising model on Z%, with d > 2, there exists a critical value B, =
Be(d) € (0,00) such that

(1) for B < B, there is a unique Gibbs measure and

(i1) for B > ., there exist multiple Gibbs measures.

For an outline of its proof, we need two more lemmas: For finite W C Z¢
and o' € {—1,+1}°W let us write v}, for the distributon on {—1,+1}"
prescribed in Definition 4.
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Lemma 3.7
If o, 0 € {—=1,+1}°" are such that o} < o}, it holds

d
B B
Vmoi =< pré.
To see this, remember that the conditional probability of a +1 spin at v given
all other spin values is given by m, where k denotes the number
of 41 neighbors of v. This is increasing in x and thus increasing in the full
surroundings. Holley’s theorem applies.

For a box A, = {-n,...,n}? let 7/57 + denote the probability measure on

{-1, —l—l}Zd obtained by letting everything outside A,, take spin value +1 and

according to mel on A,. An application of the above Lemma guarantees

that the limiting distribution I/f_ = lim,, 0o y;i + exists (by monotonicity).

Note that V,[i . is a particular Gibbs measure for the Ising model on Z¢ called

the plus measure. Similarly, we can define 1/5

d d
Any Gibbs measure ” satisfies 1/5’_ j VP j V,ﬁl’ ., hence ¥ < % <% by
taking limits (using Lemma 3.7 in both cases). This implies the following:

Lemma 3.8
For the Ising model on Z¢ with inverse temperature 3 > 0 the following are
equivalent:

(a) There is a unique Gibbs measure.

() v =0
(¢) VI(+1 spin at 0) = 1

(d) hm v’ 4+ (+1 spin at 0) =

(e) lim u’;\f(O ~ ONY) = 0, where A is the finite graph given by A,, joined
n—oo n

by a node representing all of the outer vertex boundary OA,,.

To prove Thm. 3.6 we can now verify (e):

e If $ is small enough, so that p = 1 — e 2% < p.(Z%), the limiting
probability is 0 (Lemma 3.4).
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e If 3 is large enough, so that # > po(Z%), the limiting probability

1-p
is strictly positive (Lemma 3.4).

e It is also increasing in p (hence in ) by taking the single-edge condi-
tional probabilities from Lemma 3.4 and applying Holley’s Theorem.
This concludes the (outline of the) proof.

Note that any convex combination of v? and v also is a Gibbs measure
on Z? hence there are infinitely many if these two do not coincide. That
raises the question if there are yet others. Somewhat surprisingly: In two
dimensions no, but for large enough /3 in dimension d > 3 there are (called
Dobrushin states, obtained as a limit with the outer configuration on A,
being plus on the upper and minus on the lower half).

On the infinite d-dimensional grid Z¢, we can consider the spatial average of
spins which is called magnetization of the material and defined by

where A, = {—n,...,n}4. With this notion of an average spin, we can distin-
guish between a paramagnetic, disordered phase in which the magnetization
is almost surely 0 and a ferromagnetic, ordered phase in which non-zero
magnetization has positive probability.

As already mentioned, Ising analyzed in his PhD thesis the one-dimensional
case and found that the correlation of spin values decays exponentially with
the distance of two sites, which implies that the magnetization equals 0. He
erroneously concluded that the model does not feature any phase transition
even in higher dimensions. This claim was proven wrong by Rudolf Peierls
about one decade later. He investigated the Ising model on Z? and proved
that it has non-zero magnetization at sufficiently low temperatures. As the
model (without external field) must have zero magnetization at sufficiently
high temperatures, he was the first to show that a model from statistical
mechanics exhibits a phase transition. A few years later, Lars Onsager com-
puted the critical temperature for the zero-field Ising model on the square
lattice exactly and rigorously.

To simulate a configuration of the Ising model on a finite graph with given
inverse temperature 3, the standard approach is to use the Monte Carlo
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method based on the well-known algorithm by Metropolis—Hastings. In this
rejection sampling algorithm, applied to the Ising model, one starts with an
arbitrary configuration and then performs single spin updates according to
the following rule: Pick a site uniformly at random and flip its spin with
probability min{e ?2# 1}, where AH is the invoked change of the total
energy. In the ferromagnetic regime without external field, flipping the spin
at a chosen site might be rejected only if the majority of its neighbors agrees
with the current spin as this implies AH > 0. Evidently, a low temperature
will considerably favor flips decreasing the energy over flips increasing it and
therefore drive the system towards more ordered states with growing patches
of aligned spins.

A different way to incorporate the microscopic evolution in a ferromagnet
at a fixed temperature with help of the Ising model is the so-called Glauber
dynamics. In this algorithm, to flip the randomly chosen spin has proba-
bility m. In contrast to the Metropolis—Hastings algorithm, here even
transitions to lower energy states might be rejected, but the tendency to or-
der remains as updates towards lower energy have probability larger than %,
towards higher energy less than %

In a long chain of atoms, these alignments at low temperature do take place
as well, but for any temperature above absolute zero, thermal fluctuations
will consistently break the aligned parts of the chain and in this way prevent
a global alignment of the system. This is the reason why the model on Z
does not achieve a global magnetization even for low temperatures.

3.2 Sociophysics

In a colloquium in 1969, physicist Wolfgang Weidlich suggested to compare
the interactions within a group of individuals holding opposing attitudes
towards a given yes-no question with ferromagnetism, more precisely the
dynamics of the Metropolis—Hastings algorithm applied to the Ising model.
Two years later, he published this idea in the article ‘The statistical descrip-
tion of polarization phenomena in society’ in which he elaborated how this
mathematical model intended to describe and explain ferromagnetism with
help of statistical mechanics can be put into a sociological context: In the
sociological reinterpretation, the interaction strength of spins in the Ising
model corresponds to the willingness of an individual to adopt the attitude

34



of the majority among its neighbors and the temperature as a model pa-
rameter for the social pressure exerted on each individual (low temperature
corresponding to high social pressure). An external magnetic field is under-
stood to shape some preference of one attitude over the other, shared by all
individuals.

In 1982, Galam et al. [21] used the Ising model on K, the complete graph
on n vertices, to describe the collective behavior in a plant where dissat-
isfied workers might start a strike. Using a mean field theory approach,
they rediscovered the phase transition described in the foregoing section and
interpreted the regime of high temperature as an individual phase (mutual in-
fluences are very limited) and low temperature as a collective one (the group
behaves coherently), separated by a critical phase in which small changes
in the system can lead to drastic changes in the group. In contrast to the
physical application of the Ising model, where a collection of atoms is form-
ing a regular lattice, it is reasonable to consider the underlying interaction
network among workers in a small plant to be all-to-all, meaning that every
worker can actually influence all his fellow workers.

Following these seminal papers, an increasing number of related models were
introduced, motivated and analyzed — in the past three decades predomi-
nantly with the help of computer simulation. The principle interaction rules
diverged slowly but surely from particle physics and today the area of socio-
physics comprises an abundance of models for opinion dynamics in groups.
For more details and further references check the comprehensive survey ar-
ticle ‘Statistical physics of social dynamics’ by Castellano, Fortunato and
Loreto [9].

3.3 Voter model and bounded confidence

Shortly after Weidlich’s sociological reinterpretation of the Ising model, in
1973, the so-called Voter model was introduced by Clifford and Sudbury
[11] as a model for two spatially competing species and later named for
its natural interpretation in the context of opinion dynamics among voters.
Its definition is very simple: Each individual holds an opinion given by a
{—1,+1}-valued variable, in the standard version these are determined by
i.i.d. (but not necessarily fair) coin flips to start with. At every time step, one
individual is selected uniformly at random and will then adopt the opinion
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of another agent, picked uniformly among its neighbors. This definition
of interaction apparently fails on an infinite graph but can be mimicked
by introducing i.i.d. Poisson clocks at all sites governing the chronology of
interactions.

On regular lattices the evolution of this model is to some extent similar to
the Ising model — in one dimension, that is on Z, it actually corresponds
exactly to the limiting case of the Ising model with zero temperature. Based
on well known results about random walks on grids, Clifford and Sudbury
were able to conclude that on the integer lattice in dimension d € {1,2} any
fixed finite subset of agents will a.s. finally agree (on one of the two opinions),
while this does not hold for d > 3. This behavior comes from the fact that
a simple random walk on the lattice is recurrent (i.e. will a.s. return to its
starting point) in dimension 1 (see exercise 18) and 2, but transient (i.e. the
event that there is no return to the starting point has non-zero probability)
in dimension 3 and higher.

The model introduced by Deffuant et al. [16] in 2000, features a different
realistic component: When two individuals meet, they will only influence
each another if their current opinion values are not too far apart from each
other. More precisely, there exists a parameter § > 0 shaping the tolerance
of the individuals: If the current opinion value of an agent is 7, other agents
holding opinions at a distance larger than 6 from n will just be ignored.

Besides the tolerance 6, this model features another parameter, u € (0, %],
that embodies the willingness of an individual to approach the opinion of the
other in a compromise. Encounters always happen in pairs, so if agents u
and v meet at time ¢, holding opinions a,b € R respectively, the update rule

reads as follows:

R R e N Vil

where 7;(u) denotes the opinion of agent u at time ¢. The idea behind this
is simple: When two individuals interact and discuss the topic in question,
they will only rate the opinion encountered as worth considering if it is close
enough to their own personal belief. If this is the case, however, they will
have a constructive debate and their opinions will symmetrically get closer
to each other — in the special case u = %, they will separate having come
to a complete agreement at the average of the opinions they hold before the
interaction.
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In this manner, groups of compatible agents concentrate more and more
around certain opinion values (their initial average) and once each such clus-
ter of individuals is sufficiently far from neighboring ones, the final opinions
are formed and all groups will from then on only become more homogeneous
by internal interactions.

When Deffuant, Neau, Amblard and Weisbuch introduced this model in [16],
it was considered on a finite number of agents having i.i.d. initial opinions,
distributed uniformly on [0, 1]. As social network they chose the complete
graph and a finite square lattice respectively. The encounters occurred in dis-
crete time by picking at each time step a pair of agents uniformly at random
from the edge set of the underlying interaction network graph. Depending
on the values of the model parameters, # and p, in their simulation-studies
they observed one of the following two long-time scenarios: Either the agents
ended up in one opinion cluster (corresponding to a consensus) or split into
several clusters (fragmentation or disagreement).

The first result for the Deffuant model considered on an infinite graph was
published by Lanchier [40] in 2011. He studied the standard Deffuant model
(i.i.d. unif([0, 1]) initial opinions) on Z and was able to prove the following
result using intricate geometric arguments:

Theorem 3.9
Consider the Deffuant model on the graph Z. If u € (0, %] s arbitrary but
fized, the initial opinions are i.i.d. unif([0,1]) and {n:(v)}vez denotes the
opinion profile at time t, then the following holds:
(i) For 6 > %, all neighbors are eventually compatible in the sense that for
allv € Z:
lim P(jne(v) —m(v+ 1) < 6) = 1.

(it) For 0 < %, with probability 1 there will be infinitely many v € Z with

lim | (v) — (v + 1)] > 6.
t—o0
One thing that is quite remarkable about this phase transition in the be-

havior of the Deffuant model is the fact that it already occurs for the one-
dimensional lattice — in marked contrast to the Ising model.

Héggstrom [30] used different techniques to reprove and slightly sharpen
this result — showing that in the consensus regime (i), all opinions actually
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converge almost surely to the mean % of the initial distribution. The crucial
idea in his proof resides in the connection of the opinion dynamics of the
Deffuant model to a non-random interaction process, which he proposed to
call Sharing a drink (SAD):

Glasses are put, one at each vertex: the one at site r € V is full, all others
are empty. As time proceeds neighbors interact and share. To be more
precise, the procedure starts with the initial profile § = 9,, i.e. {(r) = 1
and & (v) = 0 for all v # r. In each step, an edge is selected along which the
two incident vertices share their water in the same way as in the Deffuant
model itself (without bounded confidence restriction though): If the update
is on e = (u, v) it leads to

Enar(u) = (1 — 1) &n(u) + p&n(w),
Ent1(w) = pé&u(u) + (1 — p) §u(w),
Eni1(v) = &Ep(v), for all v & {u, w}.

For arbitrary n € Ny, the result {&,(v)}vev of n updates involving non-
empty glasses applied to & = d,, will be called an SAD-profile. Note that
these profiles have only finitely many non-zero values, which are all positive
and sum to 1. With d(u,v) denoting the graph distance between vertices u
and v on G, the following upper bound was recently extended from trees to
general graphs by Huang et al. [24] using a simple but clever combinatorial
argument:

Theorem 3.10

Consider the SAD-process on an arbitrary graph G = (V, E) started in vertex

r, i.e. with &(v) = 0,.(v), v € V. Then the amount at any fized vertexv € V
1

s bounded from above by FCESE

The SAD-procedure is dual to the opinion formation in the sense that it
keeps track of the opinion genealogy of an individual, i.e. the contributions
of all initial opinions to the current composition of its opinion in the following
sense:

Lemma 3.11 (Duality)

Consider an initial profile {no(v)}yev on a finite graph G = (V, E), together
with a sequence ¢ of edges encoding the update steps, and fix a vertexr € V.
Forn =n(t) € Ny we define the SAD-process dual to the update sequence ¢
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as follows.'(_Startmg with & = 90, the profile is updated according to but with

respect to ¢ = (ey,...,e1), i.e. in reversed order. Then it holds
n(r) = 3 &) molv).
veV

In their analyses of the Deffuant model on Z featuring i.i.d. unif([0, 1]) initial
opinions, both Lanchier [40] and Héaggstrom [30] singled out agents that
are cast-iron centrists. These agents start with an opinion value close to
the mean % and will never move far away from it (irrespectively of future
interactions), due to the fact that the influences they can possibly be exposed
to are — loosely speaking — either close to the mean as well or marginal.
The opinion 74(v), of an agent v € Z at a later time ¢ > 0, is a convex
combination of all initial opinions and the maximally possible contributions
on 7Z decay inversely proportional to the graph distance. Hence, the initial
opinion profile {7y(v)},ez can be such that agent v sits well-shielded in a
large section of individuals equipped with initial opinions close to % and
all individuals holding more extreme opinions are too far away to have a

significant influence on v.

With this idea in mind (leaving aside the fact that the bounded confidence re-
striction might actually eliminate possible influences), obvious candidates for
vertices of this kind are what Haggstrom [30] calls two-sidedly e-flat vertices
and Lanchier [40] denotes by the random set

v+n v
QOZ{UEZ; %—e<n+r12770(u), — Z no(u) < 3+, VnZO}.

If the initial opinions are i.i.d. unif([0,1]), it can be verified that the set
Qg is almost surely non-empty (in fact of infinite cardinality) for all € > 0
(see Prop. 1.1 in [40] or Lemma 4.3 in [30]) and that the opinion at two-
sidedly e-flat vertices will be confined to the interval [1 — Ge, 5 + 6¢] for all
times (see Lemma 6.3 in [30]). This consideration, however, is adjusted to
the geometry of the underlying network Z and does not answer the question
whether on more general graphs as well (e.g. higher-dimensional grids), we
can find vertices whose opinions are constrained to stay close to the mean by
the initial profile already.

In the standard Deffuant model, the existence of agents that will hold an

opinion close to the mean %, no matter how the random interactions take
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place, force a supercritical behavior of the system (for 6 sufficiently large) as
they will always be at speaking terms with the whole range of opinions [0, 1]
then.

This idea could in fact be employed to generalize the result for the Deffuant
model on Z to initial opinion configurations other than i.i.d. unif([0, 1]) (see
[31] and [34] or seminar talk next week).

Exercise 15
How does the Gibbs measure on a finite graph G = (V, E) look like for § — 0
and for § — oo respectively?

Exercise 16
Consider the path G on n 4 1 vertices:

0 1 2 n

To understand what the Gibbs measure on a path looks like, we can recognize
it as a simple Markov chain (X;)o<i<, with initial value X, ~ unif{—1,1}
and transition matrix

P:( p 1—p)7 for some p € [3,1].

l—p p
To this end, choose p = m;—% and verify that z/g then corresponds to the
joint distribution of (Xo, ..., X,), with Z7 = 2.

Exercise 17

Show (inductively on |E, | = n) that the probability of an edge configuration
ok(n)
P

in stage (b) to survive the conditioning in stage (c) is

1%
Also check that a spin configuration in (a) survives step (c) with probability
(1 _ p)#{disaligned neighbors}.

Exercise 18 (Voter model)

Try to understand why the voter model on Z translates to independent anni-
hilating random walk on the edges (the probability of a particle starting at a
given edge at time 0 being 2p(1 — p), where p is the probability of a node to
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be of type 1 at the start). Can you argue why locally the configuration be-
comes homogeneous (all nodes agree) as t — oo, however, the global density
of type 1 nodes stays at p?

Exercise 19
Prove the duality lemma (3.11) rigorously.
Hint: Show its statement inductively on the number n of moves.

4 Maker-Breaker games

Maker-Breaker games are a class of combinatorial games in which two play-
ers, called Maker and Breaker, compete by selecting elements from a finite or
infinite structure, with opposing objectives. These games are well-studied in
the context of graph theory, where Maker seeks to build a particular substruc-
ture while Breaker tries to prevent its formation. In the two most common
variants of the game, either nodes or edges are played, a distinction which
(depending on the objective) can become irrelevant in case the underlying
graph is e.g. a tree.

Historically seen, a game of this kind was reportedly first formulated and for-
malized by C.E. Shannon at mid-20th century and later coined as “Shannon
switching game” [41]. Day and Falgas-Ravry ([15]) extended this two-player
combinatorial game to infinite graphs, in particular to the grid Z? and asked
natural connectivity questions such as: Will Breaker succeed in isolating the
origin in a finite component or can Maker prevent that? In recent years, the
study of Maker-Breaker games has been extended to boards given by random
infinite structures as well.

To begin with, let us lay out the basic rules of the Maker-Breaker game,
taking place on a graph G = (V, E) — in some cases rooted, i.e. with one
node marked as the origin 0. All edges in F are available for play until either
fixated by Maker or removed by Breaker. The two opposing players in turns
are allowed to pick a fixed number of the remaining edges in order to either
fixate (Maker) or remove them (Breaker). In the connectivity variant of the
game, the objective for Breaker is to isolate the origin in a finite component,
while Maker tries to prevent that. We will consider simple infinite graphs
(i.e. no loops or multiple edges, |V| = o0o) with finite degrees and consider
the game won for Breaker once the origin is contained in a finite component
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separated from the rest of the graph by removed edges. Maker wins if Breaker
doesn’t (which having finite degrees, by a simple compactness argument,
translates to the task of fixating an infinite path starting at the origin). We
assume both Maker and Breaker to play optimally in the sense that they try
to maximize their chance of winning in every move. Note that the game is
deterministic on a given graph GG and only becomes a game of chance if played
on a random graph or by integrating randomness into the players’ strategies.
Further, the probability of Maker winning the game is monotonous in G in
the sense that adding nodes and/or edges to the graph can not decrease it.
Note that this probability also might heavily depend on who starts the game.

As a first example, consider the two-dimensional grid Z? (see Figure 5 for an
illustration).

Figure 5: Illustrating example of a game position on Z? after 10 moves each.

It takes little ingenuity to come up with a winning strategy for Maker in
the (1, 1)-game, i.e. when each player gets to choose one edge at a time: For
every node u = (x,y) € Z?, let us pair the two edges connecting u to the
right and upwards, i.e. to the nodes (z + 1,y) and (z,y + 1) respectively.
Note that these pairs are disjoint for different u. Maker’s strategy is then
as follows: If Breaker removes a paired edge, Maker fixates the other in the
subsequent turn. In this way, in fact all vertices (in particular the origin)
stay connected to each other. For obvious reasons, this kind of strategy is
commonly referred to as pairing strategy.

In order to make it more interesting, one can consider the more general
(m, b)-variant of the game (Breaker removes b edges, then Maker fixates m
edges in turns). Obviously, a winning strategy for Maker will persist when
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increasing m (as it does for Breaker when b is raised). However, already the
outcome of the (m,b)-game on Z? for b = 2 is far from trivial to determine.
Note that e.g. the (1, 1)- and the (2, 2)-variant of the game are not equivalent
in any sense.

4.1 Variants of the game

Since its introduction, an abundance of variants, differing either in the spe-
cific rules of the game, the players’ objectives or the underlying graphs, have
been looked at and analyzed. One of the first results [41] deals with the
objective for Maker (called “short” there) to connect two given nodes on
a general graph, while Breaker (called “cut”) tries to prevent that. Other
common objectives coined variants such as the “connectivity game”, “perfect
matching game”, “Hamiltonian game” or “clique game”, in which Maker tries
to claim a spanning tree, a perfect matching, a Hamiltonian cycle or a clique
of a given size respectively. Besides the rule that edges are picked one by one
alternatingly, the more general (m, b)-rule (commonly called biased if m # b)
has been considered and analyzed in many different contexts. Obviously, also
on a random board the probability of winning is monotone in the bias for
each player. Similar to a phase transition in p marking the emergence of a
certain structure (e.g. spanning tree, perfect matching, Hamiltonian cycle)
w.h.p. in the Erdés-Rényi random graph model G, , as n grows large, one can
investigate the corresponding threshold for the bias to allow Maker fixating
such a structure (which has been done in many different settings, see below).

Chvétal and Erdés [10] considered in their seminal paper among others the
biased (1,b) connectivity game on the complete graph K, and found that
the threshold for the bias is around b = % as n grows large (in the sense
that if each round first Breaker picks b edges, then Maker picks one edge,
it is a Maker’s win for b smaller and a Breaker’s win for b larger than this
threshold). More than 20 years later, Bednarska and Luczak [4] analyzed the
size of the largest component Maker is able to build in this context.

In the context of random boards, the Erdés-Rényi graph G, , was unsur-
prisingly one of the first targets addressed. Stojakovi¢ and Szabé [46] estab-
lished for different objectives (connectivity, perfect matching, Hamiltonian
and clique game) the threshold for the edge probability p, at which Maker
wins the unbiased (1, 1)-game with high probability as n — oo. In addition
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to that, they investigate the critical bias b (asymptotically and depending on
p) at which Maker wins the (1,b)-game.

In a first publication Day and Falgas-Ravry [14] considered the task of cross-
ing a finite rectangular grid from left to right, a special case of Shannon’s
original game but extended to the general (potentially biased) (m, b)-rule.

4.2 On Z% and its infinite percolation cluster

When it comes to the connectivity game on the d-dimensional grid, Day and
Falgas-Ravry collected a handful interesting results in a second publication
[15]. To begin with, they showed that Maker has a winning strategy for the
(m, m)-game on Z<¢, as long as m < d — 1, adapting the pairing strategy we
described above for the (1,1)-game on Z?* (see exercise 20). In two dimen-
sions, and with Maker starting the game, they were able to establish that the
player who is allowed to pick double as many edges as their opponent has a
winning strategy:

Theorem 4.1
For the Maker-Breaker connectivity game on Z* in which Maker starts, it
holds:

(1) Maker wins the (2b,b)-game for any b € N and

(ii) Breaker wins the (m,2m)-game for any m € N.

Their line of argument uses the self-duality of Z2, as well as a clever compar-
ison to so-called ¢-double-response games, for which there were useful results
readily adaptable.

Also in this article, among other things, they asked who wins the simplest
versions not covered by their results for Z?, such as (2,2), (2,3) and (3,2), in
general for better bounds on the critical bias in Thm. 4.1, and the question
whether or not Maker can win the (1, 1)-game, if it was played not on the
full square lattice, but on the bond percolation cluster instead (aiming for
a phase transition in p: For p < p.(2) = %, Breaker wins a.s. as there are
no infinite components, for p = 1, Maker has a winning strategy. Also the
board, hence Maker’s chance to win, is monotone in p).
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Inspired by these results and open questions, rather recently, Dvotak et al.
[19] analyzed the connectivity game on the infinite random board given by
i.i.d. bond percolation on Z?: Once each edge has been removed indepen-
dently with a given probability 1 — p, Maker is allowed to choose the vertex
vo and tries to prevent Breaker from isolating it in a finite component. The
advantage of letting Maker choose the “origin” vy is two-fold: On the one
hand, this makes the game more interesting, as any given vertex can already
be isolated or a pretty hopeless task for Maker to begin with, and on the
other hand, it makes the game configuration translation invariant again (it
would not be if the origin was fixed). This is crucial to make “Maker has
a winning strategy” a translation invariant/tail event (hence having either
probability 0 or 1). They showed that Breaker a.s. has a winning strategy for
every p < 1, so that this phase transition is in fact a trivial one. Their proof
readily generalizes to the (1, d—1)-game on bond percolation in d dimensions,
i.e. on Z%.

For the biased (2,1)-game on Z?, they were able to prove that this phase
transition happens at a non-trivial probability p of an edge to be kept:

Theorem 4.2
For the (2,1)-Maker-Breaker connectivity game on i.i.d. bond percolation with
parameter p on 72, it holds:

(i) Breaker wins a.s. if p < 0.52784 and
(1) Maker wins a.s. if p > 0.94013.

The key ingredient in their proof strategy is a potential-based approach, in
which Breaker in each round evaluates the current position of the game in
terms of how close Maker is to escape to infinity and plays the “most urgent”
edges to keep this danger function as low as possible.

As the edges removed in the bond percolation before the game, in principle
are given to Breaker as a start bonus, they introduced a natural, more sym-
metric generalization, which they propose to call boosted game: Before the
start of the game, each edge is independently given to Maker with probabil-
ity a, to Breaker with probability 5 and available for play with probability
1 — (a+ B), resulting in a subgraph (Z?), s on which Maker and Breaker can
claim the unclaimed edges as before. Thm. 4.2 then refers to the (2, 1)-game
on (Z*)o -
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Definition 5

Given an infinite vertex-transitive graph G, let P,, be the set of self-avoiding
walks of length n starting from a fixed vertex. Since |Prin| < [Pl |Pul, we
know that |P,|# converges to a constant  (by Fekete’s Lemma applied to
log |P,|). This constant x(G) is called the connective constant of graph G.

While the connective constant of Z? is not known exactly, the upper bound
k = k(Z*) < 2.6792 determined by Ponitz and Tittmann in 2000 can be
used to translate the following two results into regions of the parameter
space (which is the triangle {(a, 3) € [0,1]* : a+ 8 < 1} here), where either
Maker or Breaker has a winning strategy.

Theorem 4.3
Breaker a.s. has a winning strategy for the boosted (m,b)-game on (Z*)s 5 if

l—a—B<(b+1)m(L-a)

K

Theorem 4.4
Maker a.s. has a winning strategy for the boosted (m,1)-game on (Z*)ap if
m > 2 and

l—a—f<(m+1)(:—p).

These theorems (1.7 and 1.8 in [19]) are non-trivial improvements over earlier
results about the Maker-Breaker game on the infinite percolation cluster on
72 (as they extend into the interior of the parameter space). For the boosted
(1,1)-game on Z?, only Thm. 4.3 applies (as m = 1), the condition there
reads > 1 — % + « and together with the bound on k gives the following
picture for the known regions in the phase diagram:

6}

Figure 6: Known regions of the
phase diagram for the (1,1)-
game on (Z?),p:

1/2 - Almost surely, Breaker wins
for points coloured red and
Maker wins for points coloured
blue (from [19]).
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For the simplest biased boosted games, (2,1) and (1,2) in two dimensions,
the corresponding regions in the phase diagrams derived from Theorems 4.3
and 4.4 look like this:

1 1
1/2- 1/2-
'& ; e = f e
0 1/2 1 0 1/2 1

Figure 7: Known regions of the phase diagram for the (2, 1)-game on the left,
and for the (1,2)-game on the right, both played on (Z?), s (from [19]).

For fixed m,b € N, by monotonicity in both directions (horizontal and verti-
cal), there is a contour ¢ : [0, 1] — [0, 1] defined as

o(a) =sup{B € [0,1] : Maker a.s. wins the (m,b)-game on (Z*),5}.

Since ¢ is non-decreasing, it can only have (upward) jump discontinuities.
To determine in which cases ¢ is continuous, let alone its exakt form, is still
a wide open question even for the simplest choices of m, b.

Both articles, the one by Day and Falgas-Ravry [15] and the one by Dvotdk
et al. [19], contain interesting results for the infinite d-regular tree T,. In [48]
the original (1,1)-game (without boost) was analyzed on the random family
tree of a Galton-Watson-Bienaymé branching process, focussing on different
information regimes, i.e. where the board is not revealed to the players at
the start necessarily, but explored incrementally as the game proceeds.

Exercise 20

Devise a pairing strategy that guarantees a win for Maker in the (m, m)-game
on the full grid Z¢, as long as m < d — 1. Does it matter which player starts
the game? Why does this strategy break down when m > d?
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